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Overview

This report documents the results from the second year of an ongoing, year-to-year

investigation supported by the Defense Acquisition University into the design of an

infrastructure to support research in software systems acquisition. This report constitutes

the Project Deliverable identified in the proposal that gave rise to this research effort. The

overall results of the effort seek to establish a foundation for acquiring, representing, and

operationalizing a Web-based information infrastructure that can incorporate and support

new tools, techniques and strategies for transforming the theory and practice of software

systems acquisition for emerging Defense applications.

Five research tasks were performed during the yearlong project period. These include:

Task 1: We need to assess and identify whether existing software architecture description

languages (ADLs) are suitable for use in modeling or representing software product line

architectures.

Task 2: We need to identify and codify a representative sample of analysis methods

needed to determine the feasibility of a software product line architecture (cf. Valente and

Scacchi 1999).

Task 3: We need to explore emerging techniques for demonstrating or "walking through"

software product line architecture. One promising avenue points to the exploratory design
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and demonstration of a software architecture simulator (cf. Scacchi 2000) to demonstrate

system control flow and data flow at the architectural level.

Task 4: We need to iteratively refine and evolve the design of the software acquisition

knowledge web management system from our previous DAU sponsored research effort

(Scacchi, Valente, Noll and Choi 2000) to integrate the results of the three preceding

objectives.

Task 5: We need to determine the level of resources necessary to model, analyze and

simulate software product line architectures of the complexity anticipated for major

acquisition programs.

The results of these tasks are summarized in the follow pages of this Final Report.

Specifically, what follows is a complete, standalone research paper that has been

submitted and accepted for publication in the Journal of Systems and Software, later in

2001. This research paper identifies a new approach to the modeling and simulation of

software acquisition processes at the architectural level, and forecast (though

substantially refined) as the result of Tasks 1 through 5. A prototype architectural-level

process simulator was implemented in Java, and as such, is compatible with our previous

Web-based infrastructure for conducting research into software system acquisition. It also

employs the proposed DoD standard High Level Architecture (HLA), which serves as a

middleware service for integrating multiple simulation systems (in our case, multiple
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software acquisition process simulations written in Java) that interoperate across a wide-

area network, like the Internet. Details of this effort are described in the following paper.

Beyond this, two additional research publications were produced and presented at

international workshops. The first, "Experience with Software Architectures and

Configured Software Descriptions," by Walt Scacchi and James S. Choi was presented at

the Workshop on Evaluating Software Architectural Solutions - 2000, held in May 2000

at the University of California at Irvine (see http://www.isr.uci.edu/events/wesas2000 for

details). The second,  "Experience in Migrating Legacy Systems onto the Web" by Walt

Scacchi, has been invited for presentation at the 3rd. International Workshop on Net-

Centric Computing (see http://mulford.cs.ucr.edu/stilley/ncc2001/ for details), to be held

in Toronto, Canada in May 2001. These papers address topics from specific tasks

identified above. However, the major overall result from the research conducted during

the current effort is described in the paper that follows.

Please feel free to contact Dr. Walt Scacchi, Co-Investigator on this project for any

questions regarding any of the topics covered in this Final Report.
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Abstract
In this paper, we describe our efforts to support the modeling and simulation of processes
associated with software system acquisition activities. Software acquisition is generally a
multi-organization endeavor concerned with the funding, management, engineering,
system integration, deployment and long-term support of large software systems. We first
describe our approach supporting the modeling and simulation of software acquisition
processes using a software process architecture (SPA). We then introduce how we
support the distribution, concurrent execution and interoperation of multiple software
process simulations using the High-Level Architecture (HLA) and Run-Time
Infrastructure (RTI) to address the complexity of software acquisition process
architectures. To illustrate this, we provide examples from the design and prototyping of
a Web-based environment that supports the modeling and simulation of acquisition
process architectures. This environment thus serves as a new kind of software process
test-bed that can demonstrate and support experiments incorporating multiple software
process simulation systems that interoperate in a distributed and concurrent manner
across a network.

Introduction
Software acquisition includes the processes typically associated with the software
engineering life cycle. However, acquisition also includes processes that fund, manage,
integrate, deploy and support software systems before, during, and after their software
engineering life cycle. The need to address processes for systems and software
engineering, inter-organization coordination and overall project management together is
what establishes our baseline of interest in modeling and simulating software acquisition
processes.

Software acquisition processes are often large-scale, involve multiple enterprises and
stakeholders, are expensive, long-lived and frequently plagued with process coordination
problems [Boehm and Scacchi 1996, GAO 1997, SA-CMM 2000]. Large-scale
characterizes the fact that tens-to-hundreds of distinct processes for engineering, project
management, and customer/government oversight must be articulated and coordinated.
The participation of many enterprises reflects at the top-most level the division of effort
between customer, contractor and acquisition program office enterprises. Contractors in
turn often organize teams of sub-contractors, sometimes numbering into the thousands,
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into a virtual enterprise that collectively engineer and deploy the system being acquired.
Similarly, the contractor team may involve hundreds to thousands of software developers
who will produce and deliver millions of source lines of code. Consequently, program
acquisitions for military systems or public infrastructure systems (e.g., air traffic control)
cost billions of dollars. Finally, long duration reflects the fact that some programmatic
acquisitions for large systems span 10-20 years from initiation through deployment and
post-deployment support. Thus, modest improvements in the efficiency or effectiveness
of acquisition processes or process configuration, can realize savings in millions of
dollars, many person-years (or person-decades) of engineering effort, and improve the
quality of the delivered systems [ARO 1999].

Given the complexity of large acquisition efforts, we choose to examine software
acquisition processes from an architectural perspective. In this regard, our position is that
modeling and simulating software acquisition processes requires some kind of factoring
to manage their complexity.  Factoring is needed to realize both a separation of concerns
through a factorable architecture of interconnected and interrelated processes, as well as
facilitating, guiding or managing the scalable composition of component processes that
together constitute software acquisition. Factoring also enables the partitioning,
distribution and concurrency of process activities spread across many participating
enterprises. Subsequently, in order to be able to construct and simulate factorable models
of software acquisition processes, we require architectures that can separate and
configure a distributed web of software acquisition processes. An architectural
perspective also enables us to explore the potential for formulating families of common
software processes into a product line [Bergey, Fisher, and Jones 1999], or better said,
process line. Therefore, we will refer to this structured web as a process architecture for
software acquisition.

The focus of our research effort here is to describe our approach to modeling and
simulating architectures for software acquisition processes [cf. Boehm and Scacchi 1996,
Scacchi and Boehm 1998, Schoff, Haimes and Chittister 1998]. We describe our
approach supporting the simulation of software acquisition processes within a process
architecture. Along the way, we introduce how we employ the High-Level Architecture
(HLA) and Run-Time Infrastructure (RTI) [Kuhl, Weatherly, Dahmann 1999] to support
the distribution, concurrent execution and interoperation of multiple software process
simulations to address the complexity of software acquisition process architectures. Such
an investigation can help us determine whether the HLA can serve as a wide-area or
global test-bed that could enable the interoperation of multiple software process
simulations that have been independently developed by loosely-coupled community of
software process researchers or practitioners located around the world. Finally, we
introduce the design and prototyping of a Web-based environment that supports the
modeling and simulation of acquisition process architectures, as well as a variety of
analyses and process prototyping capabilities.

Approaches to Modeling Software Process Architectures
We describe four concepts in this section. The first is a language we developed for
modeling, prototyping and enacting software and business processes, called PML.
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Second, we describe how we extend and combine PML with software architectural
design (AD) constructs to model a software process architecture (SPA). Third, we
evaluate the use of PML and the HLA as schemes for modeling a SPA. Last, describe
how an SPA can be integrated into a Web-based environment for modeling software
acquisition processes that can be simulated across a distributed run-time infrastructure.

PML: A Language for Modeling Software Processes
Noll and Scacchi [2001] have developed and demonstrated the design of PML and its
Web-based run-time environment. PML has been used to model a subset of acquisition
processes at the U.S. Office of Naval Research in legacy as-is, redesigned to-be, and
transition here-to-there forms  [Noll and Scacchi 2001]. The legacy processes span more
than 120 problem-solving tasks as process steps that occur in multiple locations
within/between ONR's national and international offices.

PML is a declarative language for modeling and specifying complex processes. It acts as
an extensible process markup notation that can be compiled into an executable form to
support process prototyping and process enactment across the Web, as well as serving as
a person-in-the-loop process simulator [Scacchi 2000]. These capabilities enable multi-
user process modeling, analysis, walkthrough, redesign, and enactment across a
distributed virtual enterprise of cooperating networked enterprises [Noll and Scacchi
1999, Scacchi and Noll 1997].

The design of PML was based on compatibility with the knowledge-based software
process meta-model that we had previously developed and used in our process modeling
and simulation efforts [Mi and Scacchi 1990, 1996, Scacchi 1999]. According to this
process meta-model, agents (people or programs) perform processes using tools that
require resources in order to provide intermediate or final products. Process resource
requirements and provision are specified using predicate expressions that serve as pre-
conditions or post-conditions on process enactment [Noll and Scacchi 1999, 2000].
Process flow is ordered using sequential, conditional, iterative or concurrent control
constructs. Processes are also decomposable into a hierarchy of sub-processes or action
steps. Finally, processes associate tools for process enactment that are connected through
interpretable scripts that explicitly invoke (a) client-side routines, forms processing,
applets or helper applications, or (b) server-side programs or servlets. Subsequently, the
run-time environment for PML was designed to operate in a fully distributed manner
without a centralized administrative authority [Noll and Scacchi 1999, 2000]. Thus, PML
is based on relatively mature software process modeling techniques combined with
constructs geared for deployment and use on the Web. Exhibit 1 displays an excerpt of a
low-level acquisition process sequence specified in PML.

process Proposal_Submit {
       action submit_proposal {

agent { PrincipalInvestigator }
requires { proposal }
provides { proposal.contents == file }
script {"<p>Submit proposal contents.\
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<p>BAA to which this proposal responds: \
<input name='baa' type='string' size=16>\
<p>CBD source for this BAA: \
<input name='cbd' type='string' size=50>\
<br>Proposal title: <input name='title' type='string' size=50>\
<br>Submitting Institution: <input name='institution' type='string' size=25>\
<br>Principal Investigator: <input name='PI' type='string' size=20>\
Email: <input name='PIemail' type='string' size=20>\
<br>Contact: <input name='contact' type='string' size=20>\
Email: <input name='contactEmail' type='string' size=12>\
<br>Proposal contents file: <INPUT NAME='file' TYPE='file'>"

             }
         }
       action submit_budget {

agent { PrincipalInvestigator }
requires { proposal }
provides { proposal.budget == file }
script {"<p>Submit budget.\
<br>Proposal title: <input name='title' type='string' size=50>\
<br>Budget file: <INPUT NAME='file' TYPE='file'>\
<br>Email address of contact: <input name='user_id' type='string'>"

             }
         }
       action submit_certs {

agent { PrincipalInvestigator }
requires { proposal }
provides { proposal.certs == file && proposal.certifier == user_id }
script {"<p>Submit electronically signed certifications.\
<br>File containing signed certifications: <INPUT NAME='file' TYPE='file'>\
<p>User ID of signature: <input name='user_id' type='string'>"

             }
         }
}

Exhibit 1. An excerpt from an acquisition process specified in PML for submitting a
software research or development proposal (Noll and Scacchi 2001).

Modeling Software Process Architectures
Researchers at CMU, UC Irvine, USC and elsewhere has been investigating new
languages, tools and environments that focus attention on software system architectures
[e.g., Medvivdovic and Taylor 2000, Shaw and Garlan 1996]. In our work, we chose to
adopt architecture design (AD) techniques and constructs from this related research in
order to support the modeling of software process architectures.  Furthermore, since our
focus on SPAs for acquisition is within the purview of government and military
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enterprises, we chose to explore the viability of the HLA framework in developing
distributed simulations of processes within an acquisition SPA.

ADs are used to specify the components, connectors, interfaces and interconnection
configuration of composite software systems. Components are objects that encapsulate
new/legacy application programs or commercial-of-the-shelf software products.
Connectors are object types that encapsulate application program interfaces (APIs),
middleware, protocols, software buses, or other messaging mechanisms that enable the
interoperability and exchange of parameter values, data objects or control signals
between components. Both components and connectors have interfaces that specify
application resources. In some AD languages, interfaces may also specify logical pre-
conditions of imported resources, and post-conditions on exported resources. Further
information about components and connectors can be specified or automatically extracted
to include network host address, author/owner, and timestamp attributes (e.g., for time of
most recent modification) [Choi and Scacchi 1990]. Finally, the configuration of
software system architectures specifies which components are connected to which
connectors through compatible interfaces. As a result, configurations can be developed
and deployed across a network, as well as analyzed to verify its consistency,
completeness, traceability and internal correctness [Choi and Scacchi 1998].

Historically, process architectures were used to provide a conceptual framework for
process management tasks, and to provide mechanisms for specifying software processes
with entry ("pre") and exit ("post") conditions for each process component [Radice, et al.
1985]. These early process architectures lacked an explicit process modeling language or
execution environment. In contrast, PML provides notational forms for component
processes enacted by agents using tools whose resource requirements and product
provisions are specified with explicit pre-/post-conditions. PML tool scripts serve as
connectors that interconnect application programs to a process component. PML process
components are then interconnected through control flow constructs interpreted by the
PML run-time infrastructure [Noll and Scacchi 2001].

In PML, processes, resource interfaces, resources and connectors (tool scripts) are first-
class objects. Process models and SPAs specified in PML can therefore be made more
specialized or more generic depending on whether instance-level details are included or
not. Generic processes specified in PML enable the construction of common families of
software processes that can be tailored for reuse across multiple software acquisition or
development projects [cf. Bergey, Fisher, Jones 1999]. For example, the U.S. Navy has
recently begun the acquisition of a new fleet of battleships that will be researched,
developed, built and deployed over the next 15-20 years [DD21]. These ships are
software-intensive systems involving dozens of mission-critical application programs
constituted from millions of source lines of code [Scacchi and Boehm 1998]. As these
ships can be acquired in a serial manner, then the opportunity exists to articulate, refine
and continuously improve a family of common software acquisition processes, rather
than simply using a rigid standard process or developing a custom process for each ship's
system acquisition. Thus the potential for a PML-like process modeling language to serve
as the basis for a reusable SPA has real, practical and well-motivated applications.
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In our view, an SPA should enable the composition, deployment and configuration
management of multi-version processes for software development or use in a manner that
scales to distributed and networked enterprises [Noll and Scacchi 1997, 1999, 2000].
SPAs should be able to incorporate or reference other process/application software
components distributed across an intranet [cf. Scacchi and Noll 1997] or the Internet
[Noll and Scacchi 1999]. This further implies the potential for process components to be
mobile and transportable across the Internet, either as part of their deployment or
enactment. This means people who seek to collaborate can send/receive or
publish/subscribe to software process models, modify or add additional process
components, then choose to keep them for local use, or otherwise forward them to
someone else. Furthermore, if heterogeneous process modeling notations are to be
deployed and made to interoperate, then an SPA must be able to support this
compositional capability. Finally, an SPA must also serve as a basis for simulation--that
is, simulation of multiple concurrent and distributed software processes, as is found in the
domain of software acquisition. To address these needs, we have been investigating the
High-Level Architecture (HLA) and its associated Run-Time Infrastructure (RTI) as a
framework for modeling and simulating process architectures supporting software
acquisition.

Modeling SPAs using the High Level Architecture
The HLA is a proposed IEEE standard for specifying how to structure a distributed and
concurrent simulation system that is composed from multiple simulation systems or
simulation components. Interested readers unfamiliar with this standard or the
commercial technologies that support it should consult its key references [HLA 1999,
Kuhl, Weatherly and Dahmann 1999]. However, in simple terms, HLA serves as an
architectural framework for integrating and interoperating object-oriented (OO) and non-
OO simulation systems, much like CORBA serves as a framework for integrating OO
and non-OO applications. In contrast to the PML, HLA uses application program
interfaces (or remote method invocation interfaces) to pass data or control signals across
its RTI. Thus HLA can be viewed as an implementation level approach to specifying how
multiple simulation systems will be integrated in order to interoperate. HLA is also a
military standard required for use in the development of distributed simulation systems
for military applications1. Thus, HLA is more specialized and more domain-specific than
CORBA.

Up to this time, there is no record of the use of HLA to support the organization or
composition of multiple interacting software process simulation systems or simulation
components. Similarly, we could find no evidence of the use of distributed and
concurrent software process simulations, though the simulation of other kinds of parallel
and networked systems have been addressed [Fujimoto 1999]. So we have chosen to

                                                       
1 The use of the HLA framework is mandated by policy of the U.S. Department of Defense when
developing distributed simulation systems [HLA 1999]. However as our effort is research oriented, we
were not required to use it. Nonetheless, its standardization and widespread use does make it a candidate
for evaluation in our research.
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explore the use of HLA as a basis for structuring the organization of multiple process
components that can be described using an SPA, then concurrently simulated as a
distributed simulation system. Furthermore, the commercial availability of an RTI that
supports HLA-based simulations led us to choose to use it to investigate its feasibility in
demonstrating distributed and concurrent simulation of a process architecture for
software acquisition. Subsequently, the SPAs we have designed were modeled in PML as
a process-oriented hypertext [Noll and Scacchi 2001]. At the same time, we sought to
implement these processes using the HLA framework, so that we can evaluate the
capability of the RTI to integrate and interoperate distributed simulation components. The
following example characterizes one such SPA modeling and simulation effort.

Let us consider a software acquisition process architecture that involves three types of
interacting component processes to model the following kinds of entities: software
consumer enterprises; software producer (contractor) enterprises; and a program manager
to facilitate interactions between them. Additionally, we include a single process
connector to interconnect the consumer to produced processes. Such an architecture
might be visually depicted as shown in Figure 1. Figure 2 then displays a partial view
(many object attributes not shown) an HLA object hierarchy (called the HLA Federate
Object Model) for the components and connectors shown in Figure 1.

When using the HLA to integrate and interoperate multiple simulation systems,
developers must satisfy three constraints in order to be compatible with the HLA. These
constraints are imposed on any use of HLA as part of conformance to its standards
definition and conditions of usage. First, each process simulation component must adhere
to a set of ten rules for interoperating with other simulations [Kuhl, Weatherly and
Dahmann 1999]. Second, each simulation must use an explicit Interface Specification
that describes how and in what form it can exchange data and simulation events. Third,
each simulation must express data about its public (externally visible) state in form of the
HLA Object Model Template (OMT). Each of these requirements bears some further
description, though the interested reader should consult the external references for details
beyond our exposition here [HLA 1999, Kuhl, Weatherly and Dahmann 1999].
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Figure 1: A software process architecture for acquisition with multiple process
components that pass messages using a globally shared process connector (the

Fulfillment Mechanism)

First, of the ten rules, five specify constraints on how simulation components interact
with one another as a federation. For example, one rule states that when operating as a
federation, the representations of all simulation associated object instances shall be in the
component simulation, and not in the RTI they use to exchange object instances or
values. The other five rules apply to individual simulation components. For example, one
such rule states that each simulation component shall be able to update and/or reflect any
attributes, and send/or receive interactions, as specified in their HLA compatible
Simulation Object Model.

Second, conforming to the Interface Specification requires use of an HLA RTI that is
linked into a simulation to enable interaction with other distributed simulations. The RTI
supports six categories of functionality that model and manage how HLA simulations can
interact through the global broadcast and synchronization of events that are
communicated via shared publish/subscribe registries. The SPA shown in Figure 1 should
be able to conform to this constraint, using its connector as a global mechanism for
broadcasting and synchronizing events exchanged across different simulation process
components.
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Figure 2. HLA object class hierarchy model for a software acquisition process
architecture

Third, expressing public simulation state data via OMTs suggests a scheme reminiscent
of how the extensible markup language, XML, can be used to disseminate the syntax and
instances of object data types over the Web. Note that the operational or interpretative
semantics of objects is not transmitted, thus the exchange of information requires a prior
understanding and agreement as to what the objects and instances mean. This in turn
implies that knowledge of objects is distributed among all the simulation components,
and thus the potential exists for different simulation components to exchange common
objects, but establish their meaning locally. This is in marked contrast to the use of
process meta-models, which support process simulation and interoperability through a
centralized semantic data model [Mi and Scacchi 1990, 1996]. Maintaining and updating
a centralized semantic model is much easier than maintaining distributed simulation
object semantics local to each simulation. The effort required to maintain and evolve
distributed object semantics does not scale with the incorporation of more simulation
components. In fact, it does just the opposite, it generates a combinatorial explosion of
possible object meaning inconsistencies and propagated updates.
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Thus, we came to the following dilemma in order to use the HLA to model SPAs for
distributed simulation: HLA is not a general-purpose architecture for modeling and
interoperating application systems or software processes. The three constraints that guide
its use impose a specific architectural style that assumes global broadcast and
synchronization of events to facilitate interoperability, while sacrificing ease of
maintenance and evolution. Nonetheless for prototyping and evaluation purposes, where
the semantics of process simulation objects is limited, then the HLA is a plausible
candidate to investigate the potential of the distributed and concurrent simulation of
interacting software processes, albeit within a pre-determined architectural style.

Simulation of Software Acquisition Process Architectures
In previous work, we have demonstrated and comparatively examined different
approaches to the simulation of software processes [Scacchi 1999,2000]. This includes
the introduction of person-in-the-loop software process simulators that enable interactive
exploration (e.g., browsing, prototyping and walkthrough) of software processes [Scacchi
2000]. Given the approach to modeling and analyzing software process architectures we
introduce in our current effort, we need to explain and demonstrate how simulation of
software acquisition processes fits into our overall scheme.

A Software Acquisition Process Simulator
We continue to employ and extend the process simulator techniques noted above, but
now we apply them to the domain of software acquisition process architectures. As our
software process architectures are configured and interlinked (i.e., "hyperlinked"), then
their internal/external representation can be navigated as a process-oriented hypertext
[Noll and Scacchi 1999, 2001]. This capability provides a basis for providing Web-based
process prototyping, simulator and enactment services. Using PML as the basis for
modeling SPAs, we were able to produce a software acquisition process simulator whose
operations and capabilities are similar to what we achieved and demonstrated in previous
work [Scacchi 2000]. However, now we are able to enrich the experience of people
interacting with an acquisition process simulator through the ability to model and link
collateral assets for simulating multiple, interacting software processes in a manner that
can be distributed and accessed over the Internet/Web, as we will show later.
Accordingly, in Figure 3, we display the view of a software process simulator for one
process step modeled in PML (cf. Exhibit 1).
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Figure 3: Display view of a single process step from a software acquisition process
simulator

A Test-bed for Simulating Architectures for Software Acquisition Processes
Beyond providing a process simulator that supports the navigational walkthrough of
software acquisition processes one step at a time, we also are investigating the use of
architecture-level simulation techniques to assess the dynamic performance of alternative
process enactment scenarios associated with different software acquisition processes or
process architectures. Here we have been exploring how the RTI for HLA can be adapted
to support the simulation (i.e., simulated enactment of process events or state transitions)
of software process architectures. Current implementations of the RTI provide a
framework to simulate, monitor, measure and display the performance of a distributed or
federated software system architecture (e.g., see http://www.pitch.se/pRTI). However,
our challenge is to determine the appropriateness and performance of the RTI as a
simulation facility for distributed software processes and software process architectures
in general, and for architecture of distributed software acquisition processes in particular.
Accordingly, we set out to prototype a distributed and concurrent simulation of an
architecture of software processes using the RTI.

According to the HLA, system simulation components are designated as federates [Kuhl,
Weatherly, and Dahmann 1999]. So we designed a software acquisition process
architecture consisting of four interoperating process federates (i.e., component
processes) that could be performed concurrently. These were processes for:
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•  Software Consumer -- Process components of this type simulate a consumer
enterprise (e.g., the U.S. Navy) that seeks a new component-based software
application system. The enterprise then requests software system components to be
developed by a contractor. Each consumer enterprise eventually receives the
requested components, then puts the component to use. Then the consumer requests
more components until its needs are met. Multiple concurrent instances were allowed
to execute in order to simulate multiple consumer enterprises that can independently
request software components to be produced and shipped.

•  Software Producer -- Process components of this type simulate a contractor enterprise
that produces software for a consumer in response to a submitted request for a
software component. Once prepared, the requested component is shipped to the
consumer as part of its deployment. Multiple concurrent instances were allowed to
execute, in order to simulate multiple producer contractors (or a team of contractors)
that could service requests for software (product) components, produce and ship
them.

•  Fulfillment Mechanism connector -- This process component simulates a fulfillment
and deployment mechanism used to represent the basic operation of a wide-area
workflow infrastructure that transports consumer requests and producer shipments.
This process waits for consumer requests, transmits them to the relevant producer
who in turn responds with a product shipment in reply. A single instance of this
process was allowed to execute.

•  Manager -- This process component simulates a program manager (or acquisition
program office) that facilitates the flow of information from the consumers through
the fulfillment and deployment mechanism to the producers, then back to the
consumers with the requested and shipped component products. A single instance of
this process was allowed to execute.

These processes are relatively simple, yet they represent basic processes involved in the
internal operations and external interactions among a group of enterprises that participate
in a software acquisition. These processes, as described above, can obviously be modeled
and simulated as a single overall process using a conventional single-threaded simulation
package. However, our challenge is to model and simulate these as four concurrent
process types whose instances can be distributed to run on one or more multi-threaded
run-time platforms. We chose to skip the effort to implement our software process
architecture simulation test-bed using multiple networked computers, since that seemed
to be primarily a task in network programming that would not contribute significant
results to our investigation, though the HLA and RTI can support such a capability.

We implemented three process simulation components and one process connector,
following the SPA depicted in Figure 1. Accordingly, we implemented the four software
process simulation federates, conforming to the HLA object models (See Figure 2), in
Java. Java was chosen in part for compatibility with our PML and Web-based acquisition
process modeling and simulator environment [Noll and Scacchi 2001, Scacchi and Noll
1997], and with the Java-based HLA RTI available to us. Each of the four acquisition
process simulation component types was implemented as an OO program in
approximately one thousand source lines of Java code (about 4000 Java SLOC in total).
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At least 80% of this code is needed to facilitate use of the HLA RTI interface
specification and the simulation messaging OMT required by the HLA standard. The
Java code required to create the user interface displays and monitor the execution of the
process simulation component is not included in these source code figures, since they
employed reusable library packages. The simulation programming task was also
simplified through our reuse and modification of a similar multi-federate simulation
system example that is supplied by Kuhl, Weatherly and Dahmann [1999] to help
document and explain how the HLA and RTI framework is used. Suffice to say that there
are many low-level implementation details that we will not describe here involved in the
programming of the four types of software acquisition processes in Java to make it
conform to the three principal constraints required to use the HLA and RTI. Our results
and what we learned from our efforts now follow.

Results from Simulating an SPA when using HLA and RTI
One of the principal results we obtained is an operational prototype of a distributed and
concurrent Web-compatible environment for simulating an SPA that entails multiple
interacting processes for acquisition. Given that such an accomplishment has not been
reported before, it merits consideration for what was achieved and how, as well as what
was not realized. In contrast, we did not focus on simulating software processes specific
to a particular acquisition program at this time, since this follow-on experimentation
requires the modeling and simulation test-bed environment and capabilities that we have
developed and describe here. Thus, we will discuss some of the operational capabilities
that can be demonstrated at the user interface of this test-bed. More importantly, we can
identify six additional results that follow from the creation and evaluation of this
approach to simulating software process architectures.

The User Interface to a Distributed SPA Simulation Environment: The following
three figures provide a user interface view of state transition (on the left sides) and event
message histories (on the right sides) associated with instances of three types of software
process simulation components.  These are, first,  the Software Consumer processes that
solicit and approve proposals to produce software systems that they acquire. Second, the
Software Producer processes that submit proposals in response to solicitation requests to
develop software systems then prepare and ship those software systems those whose
proposals have been approved by a Software Consumer; and the flow of software
artifacts (proposals, software shipments, etc.) through the Fulfillment Mechanism
connector. The "Position" field indicates a parameter value that denotes the ordering of
messages flowing among the acquisition process participants. The "SoftwareComp" and
"Name" are also a parameter values that associate an identifier with specific software
artifacts (which are themselves "components") instances that are being acquired as they
move from Consumers to Producers and back, while traversing the Fulfillment and
Manager processes. The Manager view primarily tracks the origination and termination
of event notifications and is not shown. Finally, Figure 7 provides a view of the user
interface that graphically depicts an overall global state of a multi-process, multi-instance
interaction while simulating a software process architecture for software acquisition.
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 Figure 4. A UI view of Software Consumer process instance activity

Figure 5. A UI view of Software Producer process instance activity

Figure 6. A UI view of the Fulfillment Mechanism activity

Interoperation of Multiple Process Simulation Components: Using this simulation
environment, we are able to demonstrate multiple software process simulations whose
interoperation is distributed and concurrent, through the use of independent control
threads. The execution and interoperation that is realized through the message-passing
scheme supported by the HLA and RTI is monitored and displayed through the user
interfaces described above. This result represents an advance in the development of new
infrastructures that support software process simulation. Furthermore, our expectation is
that adding more content and complexity to the process simulation dynamics would have
little impact on the simulation code that interfaces to the RTI.

Architectural-Level Simulation of Software Processes: Though our simulations model
relatively simple processes and process connectors for software acquisition, they
demonstrate the HLA and RTI can be used to implement and simulate software process
architectures. The process simulation components that are organized into an SPA may be
distributed, interoperate, and execute concurrently. Architecture-level simulation is a
technique that enables process simulation at a new, more abstract "system of systems"
level of detail, compared to the granularity of conventional software process simulation
systems. Such a technique has not previously been employed in simulating software
processes, and thus represents a new technique for analyzing complex software processes
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whose process simulation components may be physically distributed, but logically
centralized [cf. Noll and Scacchi 1999].

Use of Web-Compatible Technologies: We implemented our distributed software
process simulation test-bed using Java to simulate software acquisition processes that
were specified and modeled in PML. Such a convenience though not an advance,
nonetheless supports the construction, navigation and geographically distributed
simulation of software processes and process simulation components. This may enable
people working in multiple enterprises that are nationally or internationally distributed to
access and refine shared models of software processes, which is an important
consideration in a domain like software acquisition [Noll and Scacchi 1999, Scacchi and
Boehm 1998, Scacchi and Noll 1997].

Reusable Approach and Framework for Integrating Distributed Software Process
Simulations: As shown in Kuhl, Weatherly and Dahmann [1999] the impact of adding
additional simulation components can be modest, once the cost of interfacing them to the
RTI and HLA object model templates is incurred. Thus, part of the attraction to the use of
the HLA and RTI for simulating SPAs is the ability to reuse, integrate and interoperate
more process component simulations for other software acquisition processes, sub-
processes, etc. once they are encapsulated to run with HLA and the RTI. Subsequently,
the next step is to add more realism and detail to our software acquisition process
simulations in line with what we have already achieved with those modeled in a process-
oriented hypertext [Noll and Scacchi 2001].
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Figure 7. A user interface view of the overall simulated state of a concurrent multi-
process SPA for software acquisition shown in Figure 1.

Beyond this, the capability we demonstrated with the development of our HLA and RTI
test-bed can be independently reproduced with reasonable effort. We have characterized
the general terms of our implementation and have indicated reference citations for where
others may acquire the HLA and RTI resources from which we started. Thus, our
approach to developing a distributed software process simulation environment for
experimentation is reusable, as is the framework we employed.

Partial Demonstration of Scalability: The set of preceding results help demonstrate that
there may be a path towards the construction and operation of a scalable approach and
infrastructure that can support the integration and interoperation of independently
developed software process simulations. Such a "virtual test-bed" for software process
simulation does not yet exist, but the preceding results perhaps suggest a way it could (or
could not) happen. If researchers and practitioners agree to build and use software
process simulations or simulation components that are compatible with the HLA and
RTI, then this form of global scalability could be realized. However, our experience with
HLA and RTI though suggests that such effort may be undesirable from a technical
standpoint, based on the assumption of a single architectural style. Similarly, it may be
unrealistic from a pragmatic standpoint, unless participants in the software process
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simulation community are willing to collectively migrate their efforts onto process
simulation servers that are compatible with the HLA and RTI.

Successful Demonstration of a Novel Approach Modeling and Simulating Software
Processes: Overall, the six preceding results provide evidence as to both the plausibility
and viability of modeling and simulating multiple, interacting and distributed software
processes through the use of software process architectures. Software architectures and
architectural design techniques have emerged elsewhere within the software engineering
community. The approach and results we describe indicate that the concepts and
techniques associated with software system architectures can be adopted and adapted for
use in modeling and simulating complex software processes that span and interlink
multiple enterprises. Such an advance may help realize the ability to specify, analyze and
understand software processes of a greater organizational and managerial complexity
than have heretofore been demonstrated or realized. As such, we have helped move one
step closer to the ability to design, redesign, or optimize the web of software processes
associated with the acquisition of software-intensive systems.

Discussion and Conclusions
We now turn to highlight and summarize what is new in this research.

To our knowledge, this work represents the first effort to investigate and provide results
on how software process modeling and simulation tools, techniques and concepts can be
applied to the domain of software system acquisition. Software acquisition processes are
large-scale, involve multiple distributed enterprises and stakeholders, and are expensive,
long-lived and frequently plagued with process coordination (interoperation) problems.
However, our research challenge is not to simply model and simulate software
acquisition processes as just another software process. Instead, we find the domain of
software acquisition imposes challenges for modeling and simulating software processes
in a way that is factorable into distributed and concurrent components, since acquisition
processes in practice are inherently distributed and concurrently in operation in multiple
enterprise settings. Thus, we chose to model and simulate software acquisition processes
in a manner that reflects and embodies how such processes are physically dispersed, yet
must be logically configured to interoperate. To help demonstrate this, we used two Web-
compatible approaches to modeling software acquisition processes: one based on a
declarative process modeling language PML and its process-oriented hypertext
infrastructure; the other based on the implementation of OO programs (in Java) that
encapsulate interfaces to the High-Level Architecture standard and Run-Time
Infrastructure specification.

This in turn serves as motivation for establishing and evaluating software process
architectures as a technique to address these challenges. This is the second area in which
we have contributed. Up to this time, it appears that software process modeling and
simulation efforts have assumed or been targeted to operate with one model at a time in a
single thread address space. This is particularly true of efforts that rely in the use of
commercially available packages for discrete-event, continuous system (e.g., systems
dynamics) or entity-state simulation. Interoperation of multiple, distributed and
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concurrent software process models or simulations is generally beyond the scope or
capability of these packages. In contrast, our interest was to investigate the modeling and
simulation of multiple interacting software processes as a system of process simulation
systems with interfaces that can be interconnected to enable resource, data or control flow
through process connectors. In this regard, we have introduced how software architecture
concepts can be used to model and simulate software process architectures that are
logically centralized, but physically distributed.

Next, we described how software process architectures can be evaluated with a
distributed process simulation environment. We demonstrated a test-bed environment that
supports the simulation of the concurrent interoperation of distributed software
acquisition processes and multi-threaded process instances. Our test-bed implementation
was demonstrated with relatively simple software acquisition processes. Such an
environment is best viewed as a test-bed for simulating and evaluating large sets of
complex interacting software processes where scalability and networked distribution are
required. The acquisition of large military or public infrastructure application systems
have such a requirement. Nonetheless, there is a cost to be incurred for the use of such an
environment. However, in our view large and multi-enterprise processes for software
acquisition may be a well-suited domain for incurring such costs, since the analyses and
decision-making insights that are enabled through modeling and simulation are well
justified [Brown, Grant, et al. 2000]. In contrast, the test-bed environment is probably too
much mechanism to simulate small or simple software processes where distribution and
concurrency are not essential aspects of the problem domain.

We also introduced an effort to use and assess the viability of the High-Level
Architecture (HLA) and Run-Time Infrastructure  (RTI) as a standards-based platform
for simulating the performance of software acquisition processes that are configured as a
distributed, concurrent architecture. This effort was poised in contrast to a companion
effort based on mature software process modeling language and techniques. Here we
came to find that subtle differences in how the semantics or meaning of software
processes can impact which architectural styles may be most effectively employed when
modeling and simulating software process architectures. This was an unexpected result,
since to us it represents a barrier for integrating and interoperating multiple independently
developed software process models and component process simulations.

Finally, we believe software process architectures, together with new architectural
frameworks and environments for modeling and simulating distributed, multi-component
software process architectures represent promising new areas for further research and
development within the software process community. Capabilities such as these provide
new opportunities to conduct experiments and software process performance evaluation
studies at a new level of granularity, and with a new kind of test-bed infrastructure. This
paper thus describes some initial steps into these areas.
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